Editorial: Signal Transduction in Stomatal Guard Cells
نویسندگان
چکیده
During adaptation of plants to water stress/drought, the tiny pores on the leaf surface, called “stomata,” play a very important role. Stomatal movements can modulate the entry/exit of not only CO2/water (Lawson and Blatt, 2014) but also microbial pathogens (Agurla et al., 2014; Arnaud and Hwang, 2015). The stomatal opening/closure is brought out by changes in the turgor of guard cells. The abiotic/biotic stress factors induce a series of changes in the signaling components of guard cells, such as ROS, NO, pH and calcium, leading to efflux of ions, loss of turgor and stomatal closure. Due to their dynamic responses to signals, and the ease of handling leaf epidermis, the stomatal guard cells have been popular systems to study signal transduction in plants. The guard cells are extremely efficient in their signal integration to optimize stomatal aperture. Murata et al. (2015) summarized the studies on signal transduction pathway in guard cells, with emphasis on downstream components. Extensive work has been carried out using the plant hormones, such as abscisic acid (ABA) andmethyl jasmonate (Assmann and Jegla, 2016). Similarly, the elicitors, such as chitosan and flagellin, are also used to study sensing and transduction of signals (Agurla et al., 2014). Guard cells are unique in not only their ability to respond to external signals but also their structure and development. Very few groups are working on development and differentiation of guard cells (Chater et al., 2014; Keerthisinghe et al., 2015; Torii, 2015). Besides the areas covered in the present research topic, there are additional aspects of contemporary interest. Some of these are: signaling by plant lipids in relation to guard cell function (Puli et al., 2016), molecular mechanisms of sensing CO2 (Engineer et al., 2016), signals from underlying mesophyll cells of leaf (Lawson et al., 2014) and cross-talk of ABA with ethylene and brassinosteroids during stomatal closure (Shi et al., 2015). Another area is the systems biology to integrate and model the signaling network in guard cells (Medeiros et al., 2015).
منابع مشابه
Guard Cell Signal Transduction.
Guard cells surround stomatal pores in the epidermis of plant leaves and stems. Stomatal pore opening is essential for CO2 influx into leaves for photosynthetic carbon fixation. In exchange, plants lose over 95% of their water via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate hormonal stimuli, light signals, water status, CO2, temperature, and other en...
متن کاملCa2+signalling in stomatal guard cells.
Ca(2+) is a ubiquitous second messenger in the signal transduction pathway(s) by which stomatal guard cells respond to external stimuli. Increases in guard-cell cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) have been observed in response to stimuli that cause both stomatal opening and closure. In addition, several important components of Ca(2+)-based signalling pathways have been identifi...
متن کاملNitric Oxide as a Mediator of Aba Signalling in Stomatal Guard Cells
Water shortage is likely to be one of the major global environmental stresses of the 21st century. A key plant response to declining soil water potential is increased biosynthesis and subsequent action of abscisic acid (ABA). ABA is an endogenous anti-transpirant that induces stomatal closure, thereby leading to water conservation. The signal transduction processes commencing with guard cell AB...
متن کاملArabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells.
Elevations in cytoplasmic calcium ([Ca(2)+](cyt)) are an important component of early abscisic acid (ABA) signal transduction. To determine whether defined mutations in ABA signal transduction affect [Ca(2)+](cyt) signaling, the Ca(2)+-sensitive fluorescent dye fura 2 was loaded into the cytoplasm of Arabidopsis guard cells. Oscillations in [Ca(2)+](cyt) could be induced when the external calci...
متن کاملCan prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells?
The response of stomata to many environmental factors is well documented. Multiple signalling pathways for abscisic acid (ABA)-induced stomatal closure have been proposed over the last decades. However, it seems that exposure of a leaf for a long time (several days) to some environmental conditions generates a sort of memory in the guard cells that results in the loss of suitable responses of t...
متن کامل